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Compression of a soft sphere packing
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Abstract. Mechanical properties of packings of deformable spheres of polyelectrolyte gel are studied ex-
perimentally. These particles are plunged into a brine. They have the property to swell and shrink when
the concentration of salt of the solution is varied. An oedometric compression is performed imposing cycles
of deformation at constant speed and constant salinity Cs. Under many different conditions, we study
the laws of deformation relating the macroscopic compression force F , to the macroscopic strain ε. We
find empirical non linear relations of the type F ∼ εm. The values of this exponent m are discussed and
compared to the results of measurements on a single sphere compressed on a plane as well as to the results
of experiments and simulations on dry model granular assemblies. The swelling and deswelling properties
of the spheres are used to perform isotropic compression tests. In this situation we determine the relation
between the force at equilibrium and the macroscopic strain ε(Cs). The results are compared with those
obtained in the oedometric compression tests.

PACS. 81.40.Jj Elasticity and anelasticity, stress-strain relations – 83.70.Fn Granular solids –
82.70.Gg Gels and sols

1 Introduction

Granular matter is present in numerous practical situa-
tions ranging from natural assemblies of sand in the desert,
sediments in the rivers, to industrial pastes involved into
numerous fabrication processes [1]. An important issue is
still the elaboration of an unified mechanical picture de-
scribing the static or the quasi-static behavior of large
assemblies of grains with or without a surrounding fluid
[2,3]. So far, a very partial knowledge of this problem has
been achieved for which the consequences are very practi-
cal. For example, the numerous incidents observed in in-
dustrial production lines when changing even slightly the
operation modes or the still unexplained collapses occur-
ring repetidly in industrial silos, can be attributed to this
ignorance. One of the big challenge is to achieve a descrip-
tion where the knowledge of local interactions between the
grains allows to make a prediction at a collective level. The
difficulty in this passage to a macroscopic description, is
to understand the emergence of collective behaviors such
as vault effects, global reorganizations, contact dynamics
etc. Recently, the problem of force transmission has gen-
erated many contributions either experimental [4–6], nu-
merical [7–9] or theoretical [10,11]; essentially the problem
of a dry granular assembly was investigated. These studies
have shown that the problem of force transmission is in-
deed a difficult one, and propositions were made that new
concepts of disordered systems borrowed from statistical
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physics could be applied there. This activity generates an
active debate between communities interested by granu-
lar matter, namely, in physics, soil mechanics [12], civil
engineering [13], etc. Nevertheless, in any case, it seems
that for such complex systems the study of model granu-
lar assemblies is crucial since it focuses experimental and
theoretical works on systems which are simple enough to
expect an unified vision. For example, in the case of dry
granular assemblies, early experiments of photoelasticity
performed on disordered compressed packings of discs [38]
and spheres [39] have shown the heterogeneous character
of the network of stressed particles and the large range of
contact forces. More recently, model experiments of com-
pression coupled with photoelastic observations have been
made on bidimensional ordered and disordered packings of
cylinders [6,14]; those studies have stressed on the impor-
tance of the contact dynamics during the compression pro-
cess and have also visualized the resulting heterogeneities
of the stress path; in this situation, the macroscopic com-
pression laws are found to be influenced by both the lo-
cal interactions laws, the contact dynamics, and the pos-
sible emergence of long range structures in the form of
force chains spanning the whole system. In the case of
granular assemblies embedded in a fluid, their mechani-
cal properties will depend essentially on the interactions
between the particles and on their size. In colloidal sus-
pensions, long range electrostatic interactions can gener-
ate ordered structures. Such systems behave like ductile
solids, exhibiting a non zero shear modulus and a yield
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stress (although very low) when submitted to a shear [15].
When the interactions between colloidal particles are of
short range (van der Waals forces), the particles tend to
stick and to form aggregates. If these aggregates become
sufficiently large, they can settle under their own weight.
Hence, the deformation induced by gravity of large gel
molecules [16], as well as on aggregated colloidal suspen-
sions has been observed. In the second situation, a recent
experiment [17] has also shown that this deformation can
saturates when the initial height of the sample increases.
This striking effect is due to the friction of the aggregates
with the walls of the cell and is reminiscent of Janssen’s
law for dry granular assemblies in a silo. In concentrated
suspensions of deformable particles, the friction forces of
lubricated nature are very reduced compare to solid fric-
tion. Understanding the rheology of such systems is of
great practical importance in food industry, as well as in
cosmetical and pharmaceutical industry; it is also of great
scientific interest. Recently, some experimental work has
been devoted to the study of the rheological properties of
concentrated suspensions of gel beads [40,41]. In this ar-
ticle, we design a model tridimensional granular medium
made of an assembly of compressible spheres of millimet-
ric size embedded in an aqueous solvent. The particles are
polyelectrolyte gels swollen in brine (salty water). Two
original properties of this system are used. (i) The parti-
cles have the possibility to swell a large amount in salty
water (for concentrations of salt Cs > 100 g/l) and conse-
quently, their density is very close to one. This effect con-
siderably reduces the role of gravity in the packing which
is initially isotropic. (ii) The size of the particles varies re-
versibly with the salt concentration. This last property al-
lows to perform real experiments of isotropic compression,
where the particles successively swell and shrink. Finally,
since the particles are very deformable and the friction
between them not very high, this procedure allows much
more rearrangements in the piling than for rigid and rough
particles and therefore, allows us to explore many differ-
ent regimes of compression. In this report, two kinds of
experiments are performed: oedometric compression at a
constant salinity and at a constant deformation speed and
then, isotropic compression in the quasistatic regime by
varying the salinity of the aqueous solution.

This paper is organized as follows: in Section 2 we
briefly recall the theory of the mechanical contact be-
tween two spheres (local law). The Section 3 is devoted
to the study of the mechanical behavior of packings under
odeometric compression. The isotropic compression exper-
iments are presented and analyzed in Section 4.

2 Theory: contact laws

Let us consider two elastic spheres in contact and submit-
ted to an external normal force f . Due to the fact that the
surface of contact between the two spheres increases with
f , the relation between f and the relative displacement δ
is non linear. For small deformations, the first solution of

this problem was given by Hertz [18]:

f = f1δ
3/2 (1)

where f1 is a function of the elastic moduli and the radii
R1 and R2 of the spheres:

f1 = K(1/R1 + 1/R2)−1/2 (2)

and

1/K = 3/4((1− ν2
1 )/E1 + (1− ν2

2)/E2) (3)

Ei and νi are respectively the Young and the Poisson mod-
uli of the particle i. Mindlin [19] studied how the Hertz so-
lution is modified, when a tangential force and Coulomb’s
friction are introduced in the problem. He showed that the
relation between f and δ is still non linear and depends
on the history of the surface of contact. f(δ) remains a
power law characterized by an exponent µ which does not
significantly differs from the value µ = 3/2.

3 Oedometric compression

3.1 Material and method

The aim of our experimental investigation is to determine
the macroscopic force law F (ε) between the imposed de-
formation ε and the measured force F , in polydisperse
assemblies of spheres. Each sample is submitted to cy-
cling deformations spanning between ε = 0 and ε = εmax,
at a constant compression speed ν. The oedometric pro-
cedure consists in imposing a vertical compression with
fixed lateral boundaries. We investigate, on the character-
istic curve F (ε), the influence of speed, of wall effects as
well as an increase of the maximum applied deformation
εmax. We include in this chapter a specific experimental
study on the compression of a single sphere onto a plane.
This study will be useful in the analysis of the packing
compression results.

3.1.1 Material

The very soft spheres we use to make packing, are a par-
tially neutralized poly(acrylic) acid gel swollen in salty
water. These particles are from industrial origin and are
synthetized in inverse emulsions of water in oil, stabilized
by agitation (for applications as superabsorbants). After
drying, the diameter dd of the particles varies between few
tens and few hundreds of microns. The volume of the gel
varies in a reversible manner with the salinity of the solu-
tion in which it is immersed. The swelling ratio Q which
is defined as the ratio of the volumes of the gel swollen in
equilibrium (Vs) and in the dry (Vd) state (Q = Vs/Vd),
represents the absorbency of the solution by the gel. We
have measured the variation of Q with the salt concentra-
tion Cs of the solution by optical microscopy. The results
are reported in Figure 1a. The neutralization degree of
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(a)

(b)

Fig. 1. Variation of the swelling ratio of the gel spheres with
the salt concentration. (a) For 1 g/l < Cs < 12 g/l; (b) for
1 g/l < Cs < 3 g/l.

the gel, which is the rate of neutralized acid groups on the
polyelectrolyte chains, is very high (about 75%). Therefore
the values of Q (if Cs is not too high) are much greater
than for neutral gels. We find a decrease of Q when Cs is
increased. Note that this qualitative behavior was previ-
ously found by Schosseler et al. for gel spheres [20], and
for monolithic gels [21]. The swelling ratio Q is apparently
greater for beads than for monolithic gels of the same neu-
tralization degree [21]: because in the former preparation,
the polymeric concentration is higher and the reticulation
degree is much weaker. In all the experiments we have per-
formed, we have: 1 g/l < Cs < 3 g/l. In these conditions,
Q is always greater than 100. The density of a swollen
particle ρs is estimated in the following way: the density
of the dried gel ρd is measured by helium picnometry; we
find ρd = 1.5 g/cm

3
. Note that because the particles are

slightly porous, when we try to deduce the apparent vol-
ume V occupied by a dried sphere (i.e. the volume of the
gel and the porous volume inside the particle) from its
weight and the dried density ρd, we obtain a small under-
estimation of V . Defining ρ0 to be the density of the salty
solution, we find: ρs − ρ0 < 0.006 g/cm

3
. Therefore, the

role of the gravity in our packings is very weak and our
system can be considered as almost isotropic at the begin-

Fig. 2. Photograph of spheres swollen in a salty solution (Cs =
3 g/l).

ning of every experiment. Figure 2 is a photograph of gel
spheres swollen in brine. We see that the connection be-
tween two spheres in contact is tangential. This shows the
absence of adhesion between the particles [22]. Due the
presence of counterions near the polyelectrolyte chains at
the surface of the gel, and to ions in the salty solution,
the electrostatic repulsive forces between the particles are
short range. They are negligible compare to the compres-
sion force F .

3.1.2 Samples preparation

The experiments of oedometric compression are performed
on two sets of particles obtained after sieving of the dried
product. The mean size of the particles is respectively
equal to 307 µm and 380 µm. We simply estimate the
value of the polydispersity s as:

s = 2(Dmax −Dmin)/(Dmax +Dmin) (4)

where Dmax and Dmin are the nominal values of the mesh
sizes of the sieves into which the particles are collected.
Note that s calculated from equation (4) is an underesti-
mation because it does not take into account dispersion in
the sizes of the meshes for each sieve (which is not precisely
known). Due to the fact that the mechanical behaviour of
a packing may strongly depend on its history of construc-
tion, we prepared all the packings using the same proce-
dure. First, the dried samples are weighted, and then, they
are swollen in salty water (Cs = 3 g/l). The final equilib-
rium mean diameters of the particles hence obtained are
1.45 mm and 1.8 mm, and the estimated value of the poly-
dispersity s is respectively 12% and 25%. In order to elim-
inate the residual dust, the solution is continually regener-
ated until the samples are entirely washed. The packings
are prepared by pouring altogether the beads, immersed
in the salty solution, into a cylindrical porous cell made
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of stainless steel. During the filling procedure, the main
part of the solution surrounding the particles always flows
throughout the porous cell. This collective mode of con-
struction is known to produce local arches in 2D and 3D
dry packings. Since the motion of the salty solution around
the spheres induces rearrangements in the packing, the
number of local arches initially created in the system can
be reduced, in a large extent, when the porous cell con-
taining the drained sample is immersed once again into
the solution before the onset of compression. The friction
between the walls of the cell and the particles is responsi-
ble for the presence of arches which can partly hinder the
transmission of forces through the packing. In order to re-
duce this effect, we use a cylindrical cell with a diameter
equal to the height [23,24] (Hc = Dc = 45 mm). Since the
size of the cell pores are much smaller than the swollen gel
spheres, the porous walls of the cells can be considered as
smooth at the scale of the particles.

The volume fraction η of our packings in brine is mea-
sured in the following way: a given mass of the dried
product is initially swollen in brine (Cs = 3 g/l) and
then poured into a test tube, then the total volumes of
the swollen beads and the interstitial solution are mea-
sured. Knowing the equilibrium swelling rate of the parti-
cles (Q = 100) and estimating their dried volume using the
apparent density ρd, we find the volume occupied by the
swollen particles. We determine the initial volume frac-
tion: η = 0.57± 0, 027. Note that Onoda and Liniger [25]
have found that the volume fraction is ηmin = 0, 55 for
packings of monodisperse spheres embedded in a liquid
of equal density. This value represents the minimum den-
sity of a loose packing in the absence of buoyancy forces.
Keeping in mind the fact that our system is polydisperse,
we nevertheless deduce from this result that before com-
pression the packing is very loose. Note that we can also
deduce from the measured value of η that the number of
particles n in our packings will not exceed 10 000 (if the
cell is initially full).

3.1.3 Experimental technique

The experimental setup is shown in Figure 3. The porous
cell which contains the sample is attached on a support
S fixed on a plate which can be moved in the x, y and z
directions. Two manual micrometric screws allow the mo-
tion in the x and y directions. A vertical displacement z
at a constant speed ν is performed by a direct current mo-
tor. In our system, ν can be varied between 0.3 mm/min
and 3.3 mm/min. A displacement sensor (of sensibility
∆z = 50 µm) is fixed on the support and provides an
electrical tension proportional to z (Fig. 4). A piston P is
attached to an electromagnetic balance B which is placed
on a rigid frame. Before starting each experiment, the cell
is moved until its upper part reaches the piston. Then,
using micrometric screws, a coincidence between the axis
of the cell and the piston is obtained. The diameter of the
piston is slightly smaller than the inner diameter of the
cell in order to avoid friction with the walls of the cell as
well as the crossing of a swollen sphere on the top of the

Fig. 3. Experimental setup for oedometric compression.
C: cell; S: support; P: piston; B: balance; T: tare; F : force
measured; S0: salty solution; H0: initial height of the packing;
Z: vertical displacement of the cell.

packing through the gap between the piston and the inner
part of the cell. Finally, the cell is immersed in the salty
solution. A deformation of the packing in the vertical di-
rection is obtained by moving the cell towards the fixed
piston P. The feedback of the balance ensures that the pis-
ton stands stock-still during the measurement of the force
F exerted by the spheres on the piston.

In those opaque porous cells, it is not possible to mea-
sure the initial height H0 of the packing. We therefore
determine the origin of displacements from the onset of
the compression force. The deformation ε of the system is
defined respectively to a non deformed state. If H is the
height of the deformed packing, we have:

ε = (H0 −H)/H0. (5)

3.2 Local laws

In order to characterize the mechanical behavior of a par-
ticle, we perform an uniaxial compression experiment on
a single swollen bead placed on an horizontal plane. Re-
mark: this compression test is not an oedometric process
since we do not impose a lateral constraint on the bead.
A single sphere is placed in a glass cell full of brine and
the experimental device, presented in Figure 3, is used to
measure the force. The cell is placed on a support X which
can be moved vertically towards the piston P by means
of a manual micrometric displacement (Fig. 5). Then, we
measure the relation between the deformation ε imposed
to the particle and the related normal reaction force f , ex-
erted by the particle on the piston P. The diameter of the
non deformed particle ds is determined when the contact
between the sphere and the piston is established. The de-
formation of the sphere is given by: ε = (ds−h)/ds, where
h is the distance between the piston P and the lower side
of the cell during the compression. We have verified that
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(a)

(b)

Fig. 4. Log-Log plot of the variation of the force with the de-
formation for a gel bead submitted to an uniaxial compression.
(a) εmax = 30%; ds = 3.5 mm. (b) εmax = 70%; ds = 4.5 mm.

when P is moving, the forces due to buoyancy and to cap-
illary effects are negligible.

When a gel particle initially swollen at equilibrium
and maintained in its solvent is compressed, it can expell
solvent. Nevertheless, the resulting volume reduction of
the particle is negligible at small deformations [26]. Addi-
tionally, rearrangements of the polymer network due to a
diffusion of the solvent inside the gel from the stressed
zones to the unstressed ones can also occur [26]. Con-
sequently, when a deformation is imposed to the gel,
the reaction force first rapidly increases and then slowly
decreases [26–28].

Experiments of uniaxial compression are performed on
spheres of different diameters ds (4 mm, 3.5 mm and
3.3 mm). The results for the variation of f with ε for
the two deformation ranges investigated (0%–30% and
0%–70%) as reported in Figures 4a and 4b respectively.
For εmax = 30%, the resistance to compression of a sphere
is non linear and can be expressed in the form of a power
law over the whole range of deformations (2% < ε < 30%).
We have:

f = foε
µ1 (6)

with µ1 = 1.6± 0.1. As this exponent is very close to the
Hertz’s one, we estimate the Young modulus E of the gel
by making the following assumptions: in the limit of small

deformations, and assuming that the gel remains incom-
pressible during the compression (the Poisson modulus is
then equal to 0.5) the prefactor f0 is given by the Hertz’s
law (2, 3):

f0 = 4Ed2
s/9. (7)

The different measured values for f0 gives an estimation
of the Young’s modulus E ∼ 4.2× 104 Pa. On the curve
displayed in Figure 4b we observe for ε ∼ 40% a crossover
to a new behavior. For ε > 40% a new regime appears for
which the f(ε) characteristic can not be described satisfac-
torily by a power law. Nevertheless, the effective slope in a
log-log plot yields a value around 3.5 for 40% < ε < 70%.
Remark that this exponent value is greater than Hertz’s
theoretical value. The large deformation regime measured
on gel beads is characteristic of the highly compressed gel
material and is probably due to an important deswelling
of the gel which expells a large amount of solvent for
ε > 40%. Note that in some experiments we have evi-
denced, for ε < 40%, an effective exponent slightly greater
than the Hertz’s one (µ1 ∼ 1.8 for the results reported
in Fig. 4b). This is probably due to the fact that dur-
ing the time of a compression test, T (T ∼ 5 min), the
particle slightly deswell. We have performed experiments
of force relaxation as a function of time on gel spheres
swollen in brine and submitted to an uniaxial compres-
sion at a constant deformation [27]. They show that two
relaxation processes occurs successively, characterized by
two very different relaxation times. The shorter one, τ
is of the order of the total duration of the compression
test T for the determination of the local law. Knaebel
et al. [28] attributed the shorter relaxation process in com-
pressed gel beads to diffusion of the solvent inside the gel
from the stressed zones to the unstressed ones, accom-
panied by a small deswelling of the particle. These au-
thors performed sets of uniaxial compression experiments
of duration T much smaller than τ , and at deformations
smaller than 20%. They measured a local exponent value
µ = 1.5 ± 0.1, and therefore verify with a good accu-
racy that the local behavior of the gel obeys to the Hertz
law [29]. Nevertheless, since in our experiment we operate
with a value of T comparable to τ , we still measure a lo-
cal exponent µ1 which does not strongly differs from the
Hertz’s one. Note also that in our experiments of oedomet-
ric compression the time of the compression phase remains
comparable to τ .

3.3 Global behaviour

First we present the results obtained for the study of the
stabilization of the F (ε) cycles. Then, we study the effect
of the compression speed, of the walls and also the influ-
ence of the maximum applied deformation on the stabi-
lized F (ε) characteristic.
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(a)

(b)

Fig. 5. (a) Variation of the force with the deformation for
a packing submitted to several cycles of compression; H0 =
14.6 mm; v = 1.3 mm/min; εmax = 20%. → : first cycle.
� : fourth cycle. (b) Effect of the speed of compression on the
variation of the force with the deformation (stabilized cycles).
A packing is first cycly deformed at speed v1 = 3.3 mm/min,
and then at speed v2 = 0.33 mm/min (H0 = 43 mm).

3.3.1 Cycles of deformation - stabilization of the F(ε)
characteristic

In Figure 5a we show the curve F(ε) obtained for a pack-
ing characterized by H0 ∼ 14.6 mm, ν ∼ 1.3 mm/min and
εmax ∼ 20%. This figure captures the main characteristics
of the cycles of deformation. The response of the packing
is non linear and all cycles are hysteretic. The amplitude
of the hysteresis decreases when the number of cycles in-
creases. For all samples, the stabilization of the charac-
teristic F (ε) occurs after only a few cycles (in Fig. 5a,
after the third cycle). This result differs significantly from
the behavior observed for packings of monodisperse hard
spheres for which the stabilization of F (ε) is reached
around the fortieth cycle [30]. In packings of hard spheres,
reorganizations and displacements of the particles occur
during a large number of cycles before a steady behavior
is reached. Apparently, for our systems of soft spheres, a
stable configuration is reached more rapidly. The stabi-
lization of the characteristic is reached even more rapidly
at low speed (after 5 to 6 cycles for ν ∼ 3.3 mm/min and
after 3 cycles for ν ∼ 0.33 mm/min): at large speed, the
particles do not have enough time to reach their stable

position during the two first cycles; at low speed, most
of the rearrangements occur during the first cycle. In or-
der to study the effect of the deformation speed on the
amplitude of the hysteretic response, two kinds of exper-
iments are performed. In the first one, two samples with
nearly equal heights H0 are prepared. Each of them is then
submitted to cycles of deformation at speeds v1 and v2 re-
spectively (v1 ∼ 3.3 mm/min and v2 ∼ 0.33 mm/min). In
the second experiment, a sample of height H0 is submit-
ted successively to two sets of cycles at speed v1 and v2

respectively. Because the results obtained in both exper-
iments are very similar, we report in Figure 5b those of
the second one (stabilized cycles). Clearly the amplitude
of the hysteresis increases with ν. Moreover, it is worth to
notice that, although in this experiment, the configuration
of the packing has been modified by the first series of cy-
cles at v1, his stabilized characteristic at v2 is very similar
to the one of the packing which has been compressed at
v2 only. Therefore, we conclude that the stable configura-
tion reached by different packings of same initial height,
prepared in the same conditions and submitted to cycles
of compression with εmax ∼ 20% appears to be identical
in a range v1 < ν < v2.

3.3.2 Global law and speed effect

Now we analyze the compressive part of the stabilized
cycle. In Figure 6a, we display in a logarithmic scale the
global law obtained from the experiment presented in Fig-
ure 5a. The F (ε) characteristic shows two regimes. Both
can be empirically described by a power law:

F = Foε
m (8)

m is defined as the compression’s exponent. The first
regime observed for 1% < ε < 5% is described by an
exponent m1 = 1.5 close to the local exponent µ1. For
ε > 5%, the behaviour of the packing is non linear as it
is governed by an exponent m2 = 2.3 greater than the
local one. When varying the speed of deformation ν be-
tween 0.33 mm/min and 3.3 mm/min, these two regimes
are still observed and the values of m1 and m2 do not
change significantly, within 9% for m1 and 5% for m2.
These variations remain comprised within the experimen-
tal uncertainties. For this reason in all the experiments
presented in the following part of this section, the value of
ν was maintained equal to 1.3 mm/min. Considering all
the experiments performed with sufficiently high packings
(i.e. H0 > 7ds, see below) we find: m1 = 1.7 ± 0.2 and
m2 = 2.5 ± 0.2. We interpret these results in the follow-
ing way. In the regime of small deformations, m1 is close
to µ1. Consequently the global law appears to be simi-
lar to the local one. The forces are transmitted through
the packing by a network of force chains constituted by
active contacts (i.e. contacts which transmit significant
forces through the packing). Therefore, during the first
stage of the compression, the number of active contacts is
constant: either the network of force chains remains sta-
ble or it undergoes restructurations in such a way that
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(a)

(b)

Fig. 6. (a) Log-Log plot of the variation of the force with
the deformation (compressive part of the stabilized cycle) for
the experiment reported in Figure 5a. (b) Large deformation
behavior: log-log plot of the variation of the force with the
deformation for a packing for which v = 1.3 mm/min, εmax =
37%, and H0 = 43 mm.

the number of active contacts which break remains equal
to the number of contacts which become active. We have
tested, using a simple scaling argument, if the relevant
force chains could be quasi linear. In this case, it is simple
to estimate a scaling behavior such that:

F0 ∼ Nf0/(H0/ds)
3/2 (9)

where N would be the number of the nearly vertical force
chains joining the piston and the lower part of the cell,
and H0/ds the mean number of particles in a vertical
chain. In fact our experimental outcome seems to con-
tradict this simple viewpoint. We have determined for ex-
periments performed for different initial heights H0, the
value of N given by equation (9) and the values of N
hence calculated are very different. Additionally, they cor-
respond to a density of linear chains greater than that
obtained for close packing of linear chains. This result
is not very surprising because in an oedometric experi-
ment, the condition of zero lateral displacement imposes
that normal forces are transmitted to the vertical wall
of the cylindric cell by vaults. Nevertheless, it remains
not obvious to understand why, in a disordered packing,
we find a compression’s exponent close to the local one.
When the deformation increases, the mechanical contacts

between spheres are still described by the Hertz’s law, but
the number of active contacts increases with the applied
deformation (consolidated regime [23]). These two regimes
have also been observed experimentally by Travers [31] on
bidimensional (2D) ordered packings of equal cylinders of
plexiglass submitted to an oedometric compression. The
consolidated regime was found to be governed by an expo-
nent m2 ∼ 3.9 higher than the local exponent (which was
measured experimentally for cylinders [23]). The disorder
of contact in these systems was of small amplitude and
was due to a small distribution in the radii of the cylin-
ders and to the rugosity of their surface. Travers et al. also
showed that when increasing the disorder of the packing
(obtained by introducing an increasing fraction of larger
cylinders), the exponent m2 decreases until it reaches the
value 2.7 for maximal disorder [23]. For ordered packings
of very deformable cylinders of rubber, Travers found that
the exponent characterizing the global law is compara-
ble to the local one [4]. This is due to the fact that the
scale of the heterogeneities being always smaller than the
scale of the imposed deformations, all the contacts be-
tween cylinders are active. Both regimes mentioned above
are recovered in numerical simulations of a scalar trans-
port problem in two dimensions [32]. Moreover, for crys-
tals of monodisperse steel spheres, Duffy and Mindlin [33]
found m = 2 for the consolidated regime; and this value
is also currently obtained in compression experiments on
dry sands [34].

3.3.3 Wall effects

2D packings of identical particles present a general trend
towards order. In 3D packings of identical spheres, the
flat wall can generate an orientational order over a short
distance that depends on the mode of construction of the
packing [35]. This order is impossible in 3D packings which
present a weak dispersion in the sizes of the particles [35].
We try now to test the presence of wall effects in our disor-
dered packings of soft spheres. Oedometric compressions
where performed on packings of spheres with a diameter
around 1.5 mm for which H0 has been varied between
5 mm and 43 mm. Two different situations are studied: in
the first case, the packings were built from the flat wall
of the porous cell described above; in the second case, the
bottom of the porous cell has been recovered by a layer of
perfectly identical glass spheres glued on it in order to ob-
tain a roughness at the scale of the gel spheres (the diam-
eter of the glass beads was approximately twice the mean
diameter of the swollen spheres). In Figure 7 the varia-
tions of the exponents m1 and m2 with H0 are reported.
In all experiments ν was equal to 1.3 mm/min. In both
cases and for H0 > 10 mm (i.e. for H0/ds ∼ 7) m1 and
m2 fluctuate around a mean value equal to m1 = 1.7 and
m2 = 2.5 respectively. The amplitude of the fluctuations
is smaller than the experimental uncertainties. The defor-
mation εt at which the transition between the two regimes
occurs fluctuates between 4% and 6%. For H0 < 10 mm,
an increase of εt and of the values of m1 and m2 is ob-
served in the case of a flat wall (for H0 ∼ 5 mm, m1 ∼ 2.2,
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Fig. 7. Wall effects: variation of the two exponents describing
the global law F (ε) with the initial height of the packing H0

for εmax = 20%. m1 and m2 are the results obtained when
the bottom of the cell is flat, whereas m1r and m2r refer to
the situation where a roughness has been created on the lower
part of the cell by gluing glass beads of diameter D = 2ds
on it.

m2 ∼ 3.25 and εt ∼ 14%). The same qualitative result was
obtained by Travers et al. [23] on 2D ordered packings of
dry cylinders: they found that the macroscopic exponents
m1 and m2 increase when H0 decreases.

3.3.4 Large deformations

Now we study the influence of an increase of the maxi-
mal applied deformation εmax on the global law F (ε). In
Figure 6b we display in a log-log representation results ob-
tained for an amplitude of deformation εmax ∼ 37% for a
packing for which H0 is equal to 43 mm. Besides the con-
solidation regime and the consolidated one, a third regime
appears on the curve F (ε) at large deformation (ε > 20%);
it can approximatively be described by a power law with
an exponent m3 ∼ 3.4. This exponent is comparable to
the one describing the local law for ε > 40% (cf. Fig. 4b,
µ2 ∼ 3.5). This result can be explained as follow: when ε
approaches 20%, because of the large deformability of the
particles all the contacts between the beads are active.
And when the deformation of the system proceeds, most
of the active contacts correspond to very deformed par-
ticles. Consequently the exponent m3 is close to µ2. The
transition between the consolidated regime and the third
one where the behaviour of the packing is dominated by
the contribution of the very deformed particles occurs at
a deformation εs ∼ 20%. Note that this crossover value
is smaller than the value obtained for the compression of
one particle (ε ∼ 40%). This is due to the fact that for
a given deformation, the forces exerted on one particle in
the packing are different from those it undergoes in an
uniaxial compression. Moreover, when the displacement
imposed to the packing become comparable to the initial
heterogeneity, close to dmaxs − dmins , all the mechanical
contacts are established in the system (dmaxs and dmins are
respectively the diameters of the largest and the smallest

particles). This threshold corresponds to a deformation εs:

εs = 2(dmaxs − dmins )/(dmaxs + dmins ) (10)

hence εs appears to be closely related to the polydispersity
s of the system. The latter is estimated to 12% for the two
packings used in this study, but we know (see Sect. 3.1.2.)
that this value is very approximate und probably underes-
timated. The right polydispersity is therefore in the sys-
tem of Figure 6b probably closer to 20%. A transition
to a regime of large deformations has also been observed
in numerical simulations in 2D [36] and in experiments
performed on 3D packings of stainless steel beads [33].
In both cases, the deformation at which this regime ap-
pears is comparable to the polydispersity of the system:
εs/s ∼ 1. Finally, we observe a small decrease of the value
of m2 for the large deformed systems, when compared to
systems where εmax < εs. This suggests that the addi-
tional rearrangements taking place at large deformations
modify the dynamics of the increase of the number of ac-
tive contacts in the consolidated regime.

4 Isotropic compression

In an experiment of oedometric compression, the deforma-
tion procedure can induce an anisotropy of the network
of active contacts. Additionally, the friction between the
walls of the cell and the particles can partly hinder the
transmission of the forces through the packing. In order
to eliminate these two effects, we also perform isotropic
experiments. First we introduce the isotropic compression
procedure. Then we present the experimental results. Fi-
nally these results are discussed and compared to those
obtained in the oedometric compression experiments.

4.1 Procedure

The apparatus used for this study, as well as the procedure
of preparation of the samples are the same than the one
used in the oedometric compression tests (see Fig. 3 and
Sect. 3.1.2.). The principle of the isotropic compression is
shown in Figure 8. A packing of spheres, initially swollen
in a solution of salt concentration Cs1, is placed in a rigid
cylindrical porous cell which is closed in its upper part
by means of a piston P attached to the electromagnetic
balance. Both are immersed in the solution of prepara-
tion. Initially, the packing does not occupy all the inner
volume of the cell. A progressive dilution of the solution
induces a swelling of the particles until they occupy the
whole cell’s volume for a salt concentration Cso. When
the dilution process goes on, the particles placed in a con-
stant volume are prevented from swelling at equilibrium.
Consequently, they exert on each other forces which are
transmitted through the packing and are experienced on
the walls of the cell. Thus, for each concentration Cs, we
measure the vertical component F of the resulting force
exerted on the piston P, at equilibrium. By imposing cycles
of swelling and deswelling (respectively by dilution and
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Fig. 8. Principle of an experiment of isotropic compression. (1)
Initially the spheres swollen at a salinity Cs1 do not occupy
all the accessible volume of the cell; (2) then the solution is
diluted and the particles swell. Forces are transmitted through
the packing when Cs > Cs0, which corresponds to the rigidity
threshold; (3) when the dilution goes on, the swelling of the
beads at equilibrium is hindered, and the network of forces
in the system densifies; (4) when Cs decreases, the particles
deswell, and rearrangements take place in the packing. The
force exerted on the upper part of the cell is measured as a
function of the salinity, when cycles of swelling and deswelling
are imposed to the system.

concentration of the solution), rearrangements are gener-
ated in the packing. The salt concentration Cso beyond
which the measured forces are not zero corresponds to the
rigidity threshold of the packing.

4.2 Experiments

Two experiments were carried out on two different sam-
ples in a rigid cylindrical porous cell (Hc = Dc = 24 mm).
Cs1 ∼ 3 g/l. For the two samples H0 ∼ 21 mm, how-
ever the mean diameters of the particles ds are different
and consequently their number n are different (n ∼ 11 000
for ds = 1 mm and n ∼ 3600 for ds = 1.45 mm). Note
that the value of H0 is here very approximate, because
it is obtained from the weight of the dried samples and
the estimated volume fraction η of the packings of swollen
particles (see Sect. 3.1.2.). Cs is measured by means of
the proportioning of the solution around the cell with a
solution of AgNO3 of normality N = 0.1. For each ∆Cs,
the time to reach equilibrium is related to the time of dif-
fusion of the solvent into the gel beads which depends of
the macroscopic diffusion coefficient Dc [20]. As Dc ∼ d2

s,
the duration of an experiment comprising two or three cy-
cles is then about five days for our millimetric particles.
The elastic properties of the gel beads a priori vary with

(a)

(b)

Fig. 9. Isotropic compression of a packing of about 3600 parti-
cles submitted to 2.5 cyles of deformation. (a) Variation of the
force with the salt concentration; Cso = (2.86 ± 0.01) g/l. (b)
log-log plot of the variation of the force with the deformation
for the compressive part of the stabilized cycle.

the salt concentration Cs. In order to study this varia-
tion, uniaxial compression experiments are performed on
gel cylinders successively swollen at equilibrium at differ-
ent salt concentrations [27] (their chemical composition is
very close to that of the gel spheres). We find that their
shear modulus present no significant variation with Cs,
for 1 g/l < Cs < 3 g/l.

4.3 Results and discussion

In Figure 9a are reported the results for the character-
istic F (Cso − Cs) for n ∼ 3600 (the results obtained
for n ∼ 11 000 are very similar). We find that Cso =
2.86 ± 0.01) g/l. The cycles show a small hysteresis and
the stabilization is reached after the second cycle. In or-
der to analyze these results and to compare them to
those obtained in the oedometric compression, it is neces-
sary to know the relation between the control parameter
(Cso − Cs) and the global deformation of the packing εg.
We define εg respectively to the non deformed state, like
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for the oedometric compression experiments:

εg = (Veq(Cs)− Veq(Cso))/Veq(Cs). (11)

Veq(Cs) is the volume that the packing would occupy
(spheres and interstitial solvent) if the particles were al-
lowed to swell at equilibrium at Cs. Note that Veq(Cso)
also corresponds to the volume of the cell, Vc. Veq(Cs) can
be expressed as:

Veq(Cs) = nVdQ(Cs)/η1 (12)

and

Veq(Cs0) = nVdQ(Cso)/ηo = Vc (13)

where Vd is the mean volume of the spheres in the dry
state. η1 and ηo are the volume fractions of the pack-
ing in the non deformed state at Cs and Cso respectively.
Then the experiment can be viewed as the result of a suc-
cession of isotropic compressions performed on packings
initially swollen at equilibrium at different salt concen-
trations, then piled under the same conditions in cylin-
drical cells of same aspect ratio (Hc = Dc) and finally
compressed isotropically until they occupy the constant
volume Vc. One can reasonably assume that the volume
fraction in the undeformed state defined above is indepen-
dent of the salt concentration: η1 = ηo. Following (11, 12,
13) εg is then given by:

εg = 1− (Q(Cso)/Q(Cs)). (14)

We determine the values of εg from the values of Q(Cs)
measured in the salt concentration range 1–3 g/l (Fig. 1b).
In Figure 9b we plot the log-log representation of the char-
acteristic F (εg) corresponding to the compressive part of
the stabilized characteristic of Figure 9a. The behaviour is
non linear. For εg > 5% the F (εg) curves can be correctly
fitted by a power law of exponent miso. For εg < 5%, the
lack of experimental points prevents the characterization
of the behaviour at small deformations. This is due to the
fact that the forces measured at smaller defomations are
of the same order of magnitude as the experimental un-
certainties. Considering the two experiments performed,
we find miso = 2.7 ± 0.2 over the deformation range
5%–24%. Note that miso is greater than the Hertz’s ex-
ponent. Hence, the observed regime corresponds to the
consolidated one. Moreover,miso is very close to the mean
value of the exponent m2 which describes the consolidated
regime in the oedometric experiments (m2 = 2.5 ± 0.2)
and also to that obtained by Travers for 2D disordered
packings of cylinders of plexiglass submitted to oedomet-
ric compression (m2 = 2.7) [23]. The fact that the global
exponent in the consolidated regime appears to be very
close in our 3D experiments and in the 2D experiments of
Travers [23] may look a priori surprising. It could be un-
derstood in the following way: in this intermediate regime,
the compression law is controlled by the increase in the
number of active contacts and this can be viewed, in a
mean-field description, as independent of the spatial di-
mension and of the local compression laws. However, be-
cause of the lack (to our knowledge) of other compression

experiments on different model packings in 2D as well as
in 3D, this explanation must be considered as a very ten-
tative one.

5 Summary and conclusions

Mechanical properties of packings of deformable spheres
made of a polyelectrolyte gel are studied experimentally.
The particles are immersed in brine and have the prop-
erty to swell or shrink with respect to salt concentra-
tion. Oedometric compression experiments are performed
on the system, by imposing cycles of deformation ε at a
constant concentration and compression rate. The result-
ing average force F on the piston is measured and after
few strain cycles, a compression law is found which can
be described empirically by a non-linear relationship of
the type: F ∼ εm. In parallel, experiments are performed
to obtain the local compression laws of a single sphere
between two planes. For many experiments on the gran-
ular assemblies, under various compression speeds, three
regimes are observed when ε is increased. For small ε’s an
exponent m1 ∼ 1.7 ± 0.1 (close to the local exponent in
the small compression regime) is measured. This behavior
is reminiscent of a behavior which was evidenced either
experimentally [4] or numerically [37] in two dimensions
for compact and regular assemblies of dry grains. For this
regime (sometimes called the “consolidation regime” [23])
an interpretation was given and tested numerically [37]:
it corresponds to a situation where, in the average, the
number of active contacts is roughly constant. Interest-
ingly in our case, we work in a situation where geometri-
cal disorder is present as well as a rather loose packing.
For higher strain ε, we obtain a cross-over to a compres-
sion law with an exponent: m2 ∼ 2.5. Such a cross-over
to a compression law with a higher exponent m was also
evidenced previously [31]; nevertheless the value of m de-
pends on the system studied. In some instances, this was
called the “consolidation regime” [31] probing a situation
where the number of active contacts increases along with
the compression. Note that an identical value of m2 ∼ 2.5
was found in a 2D experiment with a disordered array
of dry cylinders [23]. At large deformations, we measure
an exponent which identifies with the local one at large
ε’s: m3 ∼ 3.5. Such a behavior was probed on computer
simulations of regular arrays of discs in 2D [36]. It corre-
sponds to a situation where, due to the high compression
state, all the contacts are active. Nevertheless, note that
in the numerical case, the local law is still of the Hertz’s
type and thus, m3 = 1.5 is found [36]. A second series
of experiments of isotropic compression is performed by
cycling the salinity of the solution, where the particles
successively swell and deswell in a cell of constant vol-
ume. In this case, a non-linear response is also probed,
corresponding to the intermediate regime of deformation
F ∼ εmiso , with miso ' m2. Note that for practical ex-
perimental reasons we could not access to the very small
and very large deformation ranges and probe the other
regimes. In conclusion, these experiments on packings of
very deformable and polydisperse spheres in a saturated
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situation show general mechanical properties which are
quite robust and similar to other experiments on model
dry granular assemblies. On the other hand, properties
such as the exact values of the effective compression ex-
ponents, the ranges of the different compression regimes
etc., do not show this type of universality. And it is still
an open question to understand the relevant features of
the compression dynamics, the boundary conditions, the
history of construction of the packings to have a full me-
chanical picture of the passage between the local granular
interactions and the global mechanical behavior.

We thank S.J. Candau, F. Schosseler, J.P. Munch and S. Roux
for very helpful discussions. The authors dedicate this work to
J. Bastide.

References

1. R.L. Brown, J.C. Richards, Principle of Powder Mechanics
(Pergamon Press, New York, 1966).

2. Powders and Grains (Durham 18-23 may 1997), edited by
R.P. Behringer, J.T. Jenkins (Balkema, Rotterdam, 1997).

3. H.M. Jaeger, S.R. Nagel, R.P. Behringer, Rev. Mod. Phys.
68, 1259 (1996).

4. T. Travers, D. Bideau, A. Gervois, J.P. Troadec, J.C.
Messager, J. Phys. A 19, 1033 (1986).

5. C.H. Liu, S.R. Nagel, D.A. Schecter, S.N. Coppersmith,
S. Majumdar, O. Narayan, T.A. Witten, Science 269, 513
(1995).

6. B.J. Miller, C. O’Hern, R.P. Behringer, Phys. Rev. Lett.
77, 3110 (1996).

7. F. Radjai, M. Jean, J.J. Moreau, S. Roux, Phys. Rev. Lett.
77, 274 (1996).

8. S. Ouagenouni, J.N. Roux, Europhys. Lett. 39, 117 (1997).
9. C. Eloy, E. Clement, J. Phys. I France 7, 1541 (1997).

10. J.P. Bouchaud, M.E. Cates, P. Claudin, J. Phys. I France
5, 639 (1995).

11. S.F. Edwards, R.B.S. Oakeshott, Physica D 38, 88 (1989).
12. R.M. Nedderman, Statics and Kinematics of Granular Ma-

terials (Cambridge University Press, Cambridge, 1992).
13. S.B. Savage, Powders and Grains, Durham 18-23 may

1997, edited by R.P. Behringer, J.T. Jenkins (Balkema,
Rotterdam, 1997), pp. 185-194.

14. T. Travers, D. Bideau, A. Gervois, J.C. Messager, J.P.
Troadec, Europhys. Lett. 4, 329 (1987).

15. N.A. Clark, B.J. Ackerson, Phys. Rev. Lett. 44, 1005
(1980).

16. C. Allain, C. Amiel, Ann. Chim. 17, 91 (1992).
17. D. Senis, C. Allain, Phys. Rev. E 55, 7797 (1997).
18. H. Hertz, J. Reine und Angewandte Mathematik 92, 156

(1895).
19. R.D. Mindlin, Proc. 2nd US Natl. Congr. Appl. Mech.

(Ann Arbor, Michigan, 1954).
20. F. Schosseler, P. Mallo, C. Cretenot, S.J. Candau, J. Disp.

Sci. Techn. 321, 321 (1987).
21. F. Schosseler, F. Ilmain, S.J. Candau, Macromolec. 24, 225

(1991).
22. K.L. Johnson, K. Kendall, A.D. Roberts, Proc. Roy. Soc.

London A 324, 301 (1971).
23. T. Travers, Ph.D. thesis, Rennes, 1988.
24. Y. Ito, H. Kino, Powder Technol. 20, 127 (1978).
25. G.Y. Onoda, E.G. Liniger, Phys. Rev. Lett. 64, 2727

(1990).
26. A. Knaebel, Ph.D. thesis, Strasbourg, 1996.
27. T. Lachhab, Ph.D. thesis, Paris, 1994.
28. A. Knaebel, F. Lequeux, Polymer Gels and Networks 5,

577 (1997).
29. A. Knaebel, S.R. Rebre, F. Lequeux, Polymer Gels and

Networks 5, 107 (1997).
30. L. Oger, Ph.D. thesis, Rennes, 1987; M. Ammi, Ph.D. the-

sis, Rennes, 1987.
31. T. Travers, M. Ammi, D. Bideau, A. Gervois, J. Lemaitre,

J.P. Troadec, J.C. Messager, J. Phys. France 48, 347
(1988).

32. H.J. Hermann, D. Stauffer, S. Roux, Europhys. Lett. 4,
347 (1987).

33. J. Duffy, R.D. Mindlin, J. Appl. Mech. (ASME) 24, 585
(1957).

34. S.N. Domenico, Geophysics 42, 1339 (1977).
35. R. Ben Aim, Ph.D. thesis, Nancy, 1970.
36. J.N. Roux, in preparation.
37. J.N. Roux, Powders and Grains, Durham 18-23 may 1997,

edited by R.P. Behringer, J.T. Jenkins (Balkema, Rotter-
dam, 1997), pp. 215-218.

38. G. De Josselin de Jong, A. Verruijt, Cah. Gr. Fr. Rheol.
2, 73 (1969).

39. P. Dantu, Proceedings of the 4th International Conference
on Soil Mechanics and Foundations Engineering 1 (But-
terworths Scientific Publications, London, 1957), pp. 144;
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